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The two-dimensional Hubbard model on the anisotropic triangular lattice, with two different hopping am-
plitudes ¢ and ¢', is relevant to describe the low-energy physics of «-(ET),X, a family of organic salts. The
ground-state properties of this model are studied by using Monte Carlo techniques, on the basis of a recent
definition of backflow correlations for strongly correlated lattice systems. The results show that there is no
magnetic order for reasonably large values of the electron-electron interaction U and frustrating ratio t'/¢
=0.85, suitable to describe the nonmagnetic compound with X=Cu,(CN);. On the contrary, Néel order takes
place for weaker frustrations, i.e., t'/1~0.4-0.6, suitable for materials with X=Cu,(SCN),, Cu[N(CN),]Cl, or

CU[N(CN)z]Br
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I. INTRODUCTION

Organic charge-transfer salts show a wide variety of quan-
tum phases and represent prominent examples to study cor-
relation effects in low-dimensional systems. The most cel-
ebrated case is given by the TTF-TCNQ salt that has been
primarily regarded as a prototype for testing theories of one-
dimensional conductors.! Organic salts may also form crys-
tals in two and three dimensions, and, in this respect, an
increasing attention has been devoted to a particular family
denoted by -(ET),X, whose building block is the so-called
BEDT-TTF (or ET) molecule and X is a monovalent anion.?
Here, strongly dimerized ET molecules are arranged in a
two-dimensional triangular lattice. Each dimer has a charge
state with one hole and therefore the conducting band is half
filled. A sizable effective-Coulomb repulsion is felt by two
holes on the same dimer. A huge variety of phases have been
found (by varying temperature, pressure, or the nature of the
anion X), ranging from correlated (bad) metals with super-
conductivity at low temperatures, to Mott insulators with
magnetic order.>"® Interestingly, by acting with hydrostatic
pressure, metal-insulator transitions have been observed,’-8
with the remarkable possibility to stabilize a nonmagnetic
Mott insulating phase in x-(ET),Cu,(CN)3.? In this material,
there is no evidence of magnetic order down to 7=30 mK,
which is four orders of magnitude lower than the estimate of
the superexchange coupling /=250 K.

It has been argued that x-(ET),X compounds can be de-
scribed by a single-band Hubbard model on the anisotropic
triangular lattice,'? where chains described by an hopping #'
are coupled together with zigzag hoppings ¢, see Fig. 1. An
on-site repulsive term U is also present in the Hamiltonian.
However, a realistic estimate of these microscopic param-
eters is not exempt from complications. Indeed, the values
obtained some time ago by extended Hiickel band-structure
calculations!! have been put in doubt by two recent ab initio
calculations, based upon local-density approximation and
generalized gradient approximation.!>!3 Interestingly, the re-
sults suggest that these organic salts are less frustrated than
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previously assumed and that ¢'/¢ is smaller than one. Indeed,
the frustrating ratio is 1'/t~0.8 for x-(ET),Cu,(CN); and
t'/t~0.6 for k-(ET),Cu,y(SCN),.!>!3 Other materials, with
X=Cu[N(CN),]CI or Cu[N(CN),]|Br, have a substantially
smaller frustrating ratio, i.e., t'/t~0.4."> Unfortunately, an
accurate determination of the correlation energy is rather dif-
ficult and these two calculations give a considerably different
estimation of the Coulomb repulsion, namely, U/t~ 12-15
(Ref. 12) and U/t~ 5-7 (Ref. 13).

Here, we apply our improved Monte Carlo calculations,
based upon the recently introduced backflow wave function'*
in order to analyze the possibility of having a nonmagnetic
insulator for large enough frustration and interaction
strength. The paper is organized as follows: in Sec. II, we
introduce the Hamiltonian; in Sec. III, we describe our varia-
tional wave function; in Sec. IV, we present our numerical
results and, finally, in Sec. V we draw the conclusions.

II. MODEL

We consider the Hubbard model described by

FIG. 1. (Color online) Illustration of the lattice in the square
topology (a) used in this work and in the equivalent triangular one.
(b) Solid and dashed lines indicate hopping amplitudes ¢ and #’,
respectively.
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Et,j”,j,,+Hc +U2”:T”:L’ (1)

l‘](T

where cja(c,» ) creates (destroys) an electron with spin o on
site i, n; cT +Ci.o» 1 18 the hopping amplitude and U is the
on-site Coulomb repulsion. In this work, we focus our atten-
tion on the half-filled case with N electrons on N sites and
consider a square lattice with a nearest-neighbor hopping f,
along the (1,0) and (0,1) directions, and a further next-
nearest-neighbor hopping ¢’ along (1,1); this choice of the
hopping amplitudes is topologically equivalent to the aniso-
tropic triangular lattice,'” see Fig. 1. In the last years, an
intense effort has been devoted to this problem by use of a
large variety of methods, including exact diagonalization,'®
path-integral renormalization group,!” variational Monte
Carlo,'8-20 cluster dynamical mean-field theory,>"?? and dual
Fermions.?? All these methods give rather different outcomes
and there are huge discrepancies on the phase boundaries
and, most importantly, on the expected nature of the non-
magnetic insulator. The aim of this work is to clarify the
ground-state properties for two values of ¢'/t=0.6 and 0.85,
relevant for materials with X=Cu,(SCN), and Cu,(CN),, re-
spectively.

II1. VARIATIONAL APPROACH

A variational wave function for an insulator with antifer-
romagnetic (AF) order can be constructed by considering the
ground state |AF) of a mean-field Hamiltonian containing a
band contribution and a magnetic term

Har= 2 I/qa' qa’+AAF2n -S;, (2)

where n; is a unitary vector that depends upon the lattice site
i and S;=(S7.57.S;) is the spin operator. Moreover,
€ ——21(cos qy+cos q,)—2t, cos(g,+q,) is a variational band
term: t gives the energy scale and t; can be optimized to
minimize the variational energy. In order to correctly de-
scribe spin-fluctuations orthogonal to the plane where the
magnetic order lies, we take n; in the x— y plane and we
include a spin Jastrow factor J,=exp[— 2, JMiSiS5] in
the wave function.”* Another density Tastrow  factor
J=exp[- El vijnn;] (that includes the on-site Gutzwiller
term) is con51dered to adjust electron correlations. In sum-
mary, the correlated wave function is defined by

|‘PAF> = jsleF>- (3)

Notice that, in this case, the variational state has not a defi-
nite total spin, which is suitable for a magnetically ordered
phase. In fact, both |AF) and the spin Jastrow factor .7, break
the SU(2) symmetry.

On the other hand, superconducting or metallic phases
can be constructed by considering the ground state |[BCS) of
a superconducting Bardeen-Cooper-Schrieffer (BCS) Hamil-
tonian with both band and pairing contributions?>?

-
Hpes = E quq oCqot > chq,TC‘—q‘i +H.c., (4)
q

here the band term may also contain a variational
chemical potential u since the BCS Hamiltonian
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does not conserve the particle number, ie., ¢,
=-2t(cos g,+cos g,)—2t, cos(q,+q,)— . In this case, 7, and
o can be varied to optimize the variational wave function.

The full correlated state is given by

[Wpes) = JIBCS), (5)

in this case, no spin Jastrow is considered, in order to have a
perfect singlet state, suitable for a nonmagnetic phase. Nota-
bly, within this kind of wave function, it is possible to obtain
a pure (i.e., nonmagnetic) Mott insulator just by considen'ng
a sufficiently strong Jastrow factor, i.e., v,~1/ 7 (v, being
the Fourier transform of v, ;).*”

As we recently demonstrated 14 the projected BCS state is
not sufficiently accurate for Hubbard-type models, especially
in the important strong-coupling regime, i.e., for U/t= 10,
where the superexchange energy scale J=41>/U is not cor-
rectly reproduced. One efficient way to overcome this prob-
lem is to consider backflow correlations'* that modify the
single-particle orbitals®® in the same spirit of what was put
forward long time ago by Feynman and Cohen.?

Following Ref. 14, we consider a general definition of the
new “orbitals” by taking all the possible virtual hoppings of
the electrons

€¢q(ri,a) + 7712 lijDide’q(rj,fr)
J

b _
d’q(ri,(r) =
+ 7722 tijni,ohi,—trnj,—trhj,fquq(rj,‘f

J

+ 7]32 ii{(Dinj _ghj o+ 1 ohi _oH ) y(r; &
j
(6)

where we used the notation ¢,(r; ,)=(0|c; ,|#,), being |¢,)
the eigenstates of the mean-field Hamiltonian, D;=n;n; |,
Hi:hi,Thi,L’ with h,-,(,=(l—ni,(,). €, 1, T, and 73 are varia-
tional parameters. As a consequence, already the determinant
part of the wave function includes correlation effects. The
backflow corrections of Eq. (6) (in particular the #; term)
make it possible to mimic the effect of the virtual hopping,
which leads to the superexchange mechanism. All the param-
eters of the wave function can be optimized by using the
method of Ref. 30.

Finally, the accuracy of the variational calculations can be
assessed by using Lanczos diagonalizations on small lattices
and Green'’s function Monte Carlo within the so-called fixed-
node approximation,>’ which gives accurate (but approxi-
mate) results on large systems. A detailed description of the
fixed-node approximation can be found in Ref. 32. In brief,
starting from the original Hamiltonian 7, we define an ef-
fective Hamiltonian by adding a perturbation O

He = H+O0. (7)
The operator O is defined through its matrix elements and

depends upon a given guiding function |V), that is for in-
stance the variational state itself
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TABLE I. BCS pairing A for various U/ in the metallic region
for two sizes of the lattice: N=100 (third column) and N=196
(fourth column). Notice that for U/t=8 and t'/t=0.85, and for
U/t=6 and t'/t=0.6 the BCS wave function is still metallic but the
AF one (insulating) has a lower variational energy.

Ult t'/t A/t Alt
6 0.85 0.026(1) 0.018(1)
7 0.85 0.051(1) 0.025(1)
8 0.85 0.161(1) 0.037(1)
4 0.6 0.013(1) 0.005(1)
5 0.6 0.027(1) 0.008(1)
6 0.6 0.056(1) 0.019(1)

_Hx’,x if x' *x and er,x>0

0 0 if x'#x and s, <0
x'x N

y

Ey:sy,x>0 HVXE;

where ¥,=(x|¥) and s, =V .H, V. Notice that the

above operator annihilates the guiding function, namely,

O|W¥)=0. Therefore, whenever the guiding function is close

to the exact ground state of H, the perturbation O is expected

to be small and the effective Hamiltonian becomes very
close to the original one.

for x' =x,

IV. RESULTS

By allowing the most general singlet and complex
BCS pairing in the state without backflow terms, we
find that this quantity has d,»_,» symmetry up to t'~¢,
namely, the best (nearest-neighbor) pairing function is
A,=2A(cos g,—cos g,), in agreement with previous
results.33-3¢ Therefore, within our improved backflow wave
function, we only considered a real BCS pairing. We mention
that A is very small (especially in the presence of backflow
correlations) in the conducting phase, see Table I, and it be-
comes sizable only in the regime where the magnetic solu-
tion prevails over the BCS state. In this regard, we do not
find a clear signature of superconductivity close to the metal-
insulator transition, as suggested in Ref. 35. We also stress
that, once the backflow correlations are considered, there is
no energy gain by allowing a translational symmetry break-
ing (e.g., by considering a 2 X 1 unit cell in the BCS Hamil-
tonian, suitable for dimerized states) and the d2_y2 solution
has always a lower energy than dimerized states. Finally, we
find that the variational band term of the BCS Hamiltonian
€,=—2t(cos g,+cos q,)—2t, cos(q,+q,)—p has t,=0 for
most of the cases considered, except for small U/t, inside the
conducting phase, where a finite 7, can be stabilized.

As far as the magnetic wave function is concerned, both
Hartree-Fock and fixed-node calculations give a clear indi-
cation that spin-spin correlations remain commensurate at
Q=(m,m) for t' /t=<0.9. Therefore, we use an AF wave func-
tion having Néel order with pitch vector Q=(7r, ) and we
do not consider the implementation of a generic magnetic
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FIG. 2. (Color online) Results for 18 electrons on 18 sites as a
function of U/r. Upper panels: accuracy of energy AE=(Ey—E,),
E, and E; being the variational and the exact values, respectively.
Lower panels: overlap between the exact ground state and the varia-
tional BCS wave functions. The state without (with) backflow cor-
relations is denoted by diamonds (squares).

0.85 ‘

state with incommensurate order. Moreover, we verified that,
for ' /t=0.9, this AF state has a lower energy with respect to
the AF state with 120° order, suitable for ¢’ =¢.

A. Quality of the variational states

In Fig. 2, we show the accuracy of the BCS variational
state and its overlap with the exact ground state in a small
lattice with 18 sites (which is tilted by 45°). We report two
cases with ¢'/t=0.6 and 0.85 and different values of U/t. As
in the case of the frustrated square lattice studied in Ref. 14,
the backflow terms highly improve the quality of the varia-
tional wave function that remains very accurate even for
large correlation, i.e., up to U/t~ 30. We would like to men-
tion that, for this small cluster, the AF state has a slightly
lower energy than the BCS one for both 7' /r=0.6 and 0.85.
For ' /t=0.6, the AF state has also a better overlap with the
exact ground state |Wy) (e.g., (Wo|Wp=0.962 for
U/t=20) than the BCS state (e.g., (¥y|WPpcs)=0.958) while
it has a substantially lower overlap for ¢'/7=0.85
(e.g., <\I’0|‘I’AF>=0904 against <\P0| \I’BCS>=0'959)'

The accuracy of the variational state remains very high
also for large systems, where the backflow corrections give a
sizable and size-consistent improvement. In Fig. 3, we report
the energy per site as a function of U/t for both t'/t=0.6 and
0.85 for N=10X 10 (see also Table II).

B. Metal-insulator transition

The metal-insulator transition can be detected by a direct
inspection of the static density-density correlations

1 )
N,= X/E e’q(R./"R/)<njnl>. (8)
jil

In fact, this quantity makes it possible to discriminate be-
tween gapless (conducting) and gapped (insulating) phases: a
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FIG. 3. (Color online) Variational energies per site (in unit of
J=412/U) for the BCS state with a density Jastrow factor (dia-
monds) and for the AF wave function with both density and spin
Jastrow terms (circles); the correlated Fermi gas with Jastrow factor
is also reported for ¢'/1=0.85 (squares). All states have backflow
correlations and results are for 100 sites.

linear behavior N, ~|g| for |g|— 0 is typical of a conducting
phase, whereas a quadratic behavior Nq~q2 can be associ-
ated to an insulating character.?’” The results presented in Fig.
4 indicate that a metal-insulator transition takes place by
increasing U/t and it can be placed at U?m/t=(5.5i0.5)
and (7.5%0.5) for ¢'/t=0.6 and 0.85, respectively. The tran-
sition is first order, with a small jump in the linear coefficient
of Nq for small momenta. In fact, for small U/¢, the best
wave function is the BCS one (with small superconducting
pairing), whereas, by increasing the interaction, the AF one
prevails, thus inducing a metal-insulator transition, see
Fig. 3.

C. Insulating phase

In the insulating regime and for small frustrating ratios,
the AF wave function has always a lower energy than the
spin-liquid state, and this fact is particularly evident close to

TABLE II. Our best energies per site for N=100: pure varia-
tional E,,. and fixed-node Ejy, (still variational) results are reported.

Ult t'/t E o/t Eg/t
0.85 —-1.03029(2) —-1.0315(1)
8 0.85 —-0.51876(5) -0.5238(1)
12 0.85 —0.36569(5) -0.3764(1)
16 0.85 —-0.2834(1) -0.2910(1)
20 0.85 —0.2311(1) -0.2364(1)
0.6 —-0.92356(2) -0.9251(1)
8 0.6 —-0.51837(3) —-0.5228(1)
12 0.6 —-0.36550(3) —-0.3689(1)
16 0.6 —-0.28041(3) —-0.2833(1)
20 0.6 —-0.22685(3) -0.2291(1)
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FIG. 4. (Color online) Variational results for the density-density
correlations N, divided by |g/, along the (1,0) direction, for 100 (red
symbols) and 196 (black symbols) sites. Full (empty) symbols refer
to the BCS (AF) wave function. Upper panel: from top to bottom,
U/t=4,5, 6, 8, and 10. Lower panel: from top to bottom, U/t=6, 7,
8, 10, and 20.

the transition, see Fig. 3. On the contrary, for the case with
t'/t=0.85, the BCS state competes with the AF one and it
becomes better in energy for U/t= 13, indicating an insulat-
ing spin-liquid behavior at large U (notice that in this region
N,~ ¢?%). In this regime, the BCS pairing is relevant since the
simple projected Fermi sea has a much higher energy, see
Fig. 3. Remarkably, the BCS and AF variational energies are
always quite close for ¢'/r=0.85, suggesting that the actual
ground state might be nonmagnetic for all U> UICVHT, or at
least down to values lower than expected on the basis of the
variational estimate. This fact is supported by the fixed-node
calculations for the spin-spin correlations

0.12
0.1} . © . ]
0.08 | a " ]
pd
= 0.06 | ]
w  /
0.04 | 3 ] 1
0.02 | é ] :
0

0 004 008 0.12 0.16 0.2 0.24
N-1/2

FIG. 5. (Color online) Size scaling of the spin-spin correlations
So/N for Q=(mr,m). Data are for ¢'/t=0.6 with U/t=10 (squares)
and U/t=20 (circles), and 7' /t=0.85 with U/r=10 (triangles) and
U/t=20 (diamonds). Variational and fixed-node results are denoted
by empty and full symbols, respectively. The variational results do
not depend substantially upon U and ¢'. The fixed-node results in-
dicate long-range order for ' /¢=0.6 but not for ¢’ /¢=0.85.
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FIG. 6. (Color online) Proposed phase diagram for the two dis-
cussed hopping ratios, ¢'/r=0.6 and t'/t=0.85. In the first case,
variational (VMC) and fixed-node (FN) results indicate both a di-
rect transition between a metal and an insulator with AF Néel order
at a critical value of the electron-electron repulsion U,.. For t'/¢
=0.85, the variational results predict the existence of three different
phases at increasing U/t: a metal, an AF insulator with Néel order
and a spin liquid, while, within the fixed-node approximation, the
nonmagnetic ground state extends down to the metal-insulator
transition.

S, =2 1TSS, )

1
Ny
In Fig. 5, we report the size scaling of the variational and the
fixed-node results by considering the BCS state as the guid-
ing function. We stress the fact that, in the insulating regime,
S, has a peak at the commensurate momentum Q=(,).
Remarkably, the fixed-node approach is able to recover a
finite value of Sy/N for Q=(m,m) (i.e., the square of the
magnetic order parameter) in the thermodynamic limit for
t'/t=0.6, even though the BCS wave function is nonmag-
netic. By contrast, S,/N tends to zero for #'/t=0.85 (both for
U/t=10 and 20), supporting the fact that the ground state is
nonmagnetic for this frustrating ratio, even close to the
metal-insulator transition. The resulting phase diagram is
summarized in Fig. 6.

V. DISCUSSION

We have studied the anisotropic triangular lattice at half
filling away from the isotropic point ¢'=¢, with ¢’ <t, using
both a Gutzwiller-Jastrow variational ansatz including back-
flow correlations as well as a Green’s function Monte Carlo
approach within the fixed node approximation. We find that
the square-lattice states persist up to large values of ¢'/r<<1,
both in terms of the d-wave superconducting order parameter
as well as for the AF Néel ordering.

The main outcome of this work is that, thanks to the im-
provement given by backflow correlations, a spin-liquid
wave function can be stabilized over magnetic states, for
large but still moderate Coulomb repulsions and close to the
isotropic limit. These variational results are corroborated by
fixed-node calculations. We find, in particular, that for ¢'/¢
=0.85, which is relevant for «-(ET),Cu,(CN);,'>!3 the insu-
lating phase has a pure Mott character, without magnetic
order. On the other hand, for #'/r=0.6, suitable for
k-(ET),Cu,(SCN),, (or even smaller ¢/t values) the insulat-
ing phase always shows Néel order with Q=(, ).
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Let us finish by discussing our results also in comparison
to other calculations and experimental findings. First of all,
in various papers, it has been suggested that the spin-liquid
phase can be stabilized by charge fluctuations that may de-
stabilize a magnetically ordered state. This claim has been
corroborated by calculations on Heisenberg models in pres-
ence of a ring-exchange term J, (that appears in the strong-
coupling expansion in 4/ U*).3” However, it turns out that the
actual value of J, for stabilizing a disordered phase is rather
large and, probably, beyond the validity of a perturbative
expansion. The existence of a direct transition from a mag-
netic phase to a disordered one has also been found in the
original Hubbard model, by decreasing the on-site repulsion
U.'%1721 We do not find any evidence of such a possibility
and, in our approach, the magnetic phase is stable in pres-
ence of charge fluctuations, even close to the metal-insulator
transition: this is the case of #'/#=0.6. Instead, the spin-liquid
phase turns out to be directly connected with the one at
strong coupling while antiferromagnetic correlations become
stronger when decreasing U/t. For example, for ¢'/t=0.85,
the variational state with magnetic order has a slightly lower
energy close to U, and we need to apply the Green’s function
Monte Carlo approach to extend the spin-liquid region down
to the metal-insulator transition, see Fig. 6. At this stage, we
would also like to mention that the metallic phase is likely to
be not superconducting. In fact, the BCS pairing A in the
metallic region is slightly suppressed when improving the
accuracy of the variational wave function by considering
backflow correlations and, moreover, it is reduced by a factor
2-3 when the lattice size is increased from 10X 10 to
14 X 14, see Table I. This fact contrasts the previous claim of
a possible superconducting phase close to the metal-insulator
transition by Liu and collaborators.®

Another very important point is to clarify the nature of the
low-energy excitations. Very recently, thermodynamic mea-
surements of the specific heat suggested the possible exis-
tence of a Fermi surface of neutral, S=1/2 fermionic
spinons.’® However, it should be noticed that such a mea-
surement involves a difficult subtraction of a divergent
nuclear specific heat and instead the thermal conductivity
(which is not affected by a nuclear contribution) shows an
activated behavior with a tiny gap of 0.46 K. This fact has
been associated with the existence of spinless “vison”
excitations.*® From our calculations, it appears that the dis-
ordered insulating phase cannot sustain a true spinon Fermi
surface, as previously suggested both on variational
calculations®” and field-theory approaches,*! but it has Dirac
points at (*7/2, * 77/2). In fact, the projected Fermi sea has
a much higher energy than our best variational ansatz with
BCS pairing, see Fig. 3. Should our results be correct, either
a deeper investigation of the minimal microscopic model for
describing organic charge-transfer salts is needed, or a rein-
terpretation of the experimental data is required.
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